
ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

1

HDF-EOS5 Data Model, File Format and Library

1. Status of this Memo

This is a description of a draft ESE Community Standard.

2. Change Explanation

This is a first draft and there are no current changes.

3. Copyright Notice

This software is freely distributed by NASA

4. Abstract

HDF-EOS is a software library designed to support NASA Earth Observing System (EOS) science data.

HDF is the Hierarchical Data Format developed by the National Center for Supercomputing

Applications. Specific data structures which are containers for science data are: Grid, Point, Zonal

Average and Swath. These data structures are constructed from standard HDF data objects, using EOS

conventions, through the use of a software library. A key feature of HDF-EOS is a standard prescription

for associating geolocation data with science data through internal structural metadata. The relationship

between geolocation and science data is transparent to the end-user. Instrument and data type-

independent services, such as subsetting by geolocation, can be applied to files across a wide variety of

data products through the same library interface. The library is extensible and new data structures can be

added. This document describes a proposed standard for HDF-EOS5 Grid and Swath structures, which

is based on the HDF5 data model and file format, provided by the National Center for Supercomputing

Applications, U. of Illinois. (NCSA)

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

2

Table of Contents

HDF-EOS5 Data Model, File Format and Library ... 1

1. Status of this Memo .. 1

2. Change Explanation .. 1

3. Copyright Notice... 1

4. Abstract ... 1

Table of Contents.. 2

5. Introduction... 4

5.1 What is HDF-EOS5?... 5

5.2 Motivation for Proposing Standardization.. 5

6. HDF-EOS5 Data Model.. 6

6.1 SWATH Data Model .. 6

6.1.1 Data Fields .. 8

6.1.2 Geolocation Fields .. 8

6.1.3 Dimensions ... 10

6.1.4 Dimension Maps ... 10

6.1.5 HDF5 Objects in HDF-EOS 5 Swath Objects ... 11

6.2 GRID Data Model... 13

6.2.1 Data Fields .. 14

6.2.2 Dimensions ... 14

6.2.3 Projections... 14

6.2.4 HDF5 Objects in HDF-EOS 5 Grid Objects.. 15

7. HDF-EOS5 File Format.. 17

7.1 Introduction... 17

7.2 HDF-EOS5 File Format.. 18

7.2.1 Overview... 18

7.2.2 Structure of an HDF-EOS5 File.. 18

7.2.3 Core Metadata.. 18

7.2.4 Archive Metadata.. 18

7.2.5 Structural Metadata... 19

7.2.6 Swath Structure... 20

7.2.7 Grid Structure.. 21

7.2.8 Hybrid HDF-EOS 5 and HDF Files.. 22

8. HDF-EOS 5 Library/ Programming Model .. 23

8.1 The Swath Data Interface.. 23

8.1.1 SW API Routines.. 23

8.1.2 File Identifiers... 27

8.1.3 Swath Identifiers ... 27

8.1.4 Programming Model ... 27

8.2 The Grid Data Interface .. 30

8.2.1 GD API Routines .. 30

8.2.2 File Identifiers... 32

8.2.3 Grid Identifiers.. 33

8.2.4 Programming Model ... 33

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

3

8.3 GCTP Usage ... 34

8.3.1 GCTP Projection Codes.. 34

8.3.2 UTM Zone Codes ... 35

8.3.3 GCTP Spheroid Codes.. 36

8.3.4 Projection Parameters ... 38

8.3.4 Additional projections.. 41

9. Implementation of HDF-EOS 5 .. 43

9.1 Software implementation ... 43

9.2 Applications .. 43

10. Operational Experience... 44

11. References... 44

APPENDIX A Example HDF-EOS5 Swath Output... 46

APPENDIX B Example HDF-EOS5 Grid Output.. 51

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

4

5. Introduction

The Hierarchical Data Format (HDF) was selected by NASA as the format of choice for standard

science product archival and distribution for the Earth Observing System (EOS) Project. HDF is a file

format and I/O library that was originally developed by the National Center for Supercomputing

Applications (NCSA) at the University of Illinois at Urbana-Champaign to provide a portable storage

mechanism for supercomputer simulation results. (HDF5 Users Guide, National Center for

Supercomputing Applications, U. of Illinois, Urbana-Champaign, 2005)

HDF5 files consist of a directory and a collection of data objects. Every data object has a directory entry,

containing a pointer to the data object location, and information defining the datatype (much more

information about HDF5 can be found in the NCSA documentation (HDF5 API Specification Reference

Manual, http://hdf.ncsa.uiuc.edu/HDF5/doc/RM_H5Front.html) Many of the NCSA defined datatypes

map well to EOS datatypes. Examples include raster images, multi-dimensional arrays, and text blocks.

There are other EOS datatypes, however, that do not map directly to NCSA datatypes, particularly in the

case of geolocated datatypes. Examples include projected grids, satellite swaths, and field campaign or

point data. Therefore, some additions to conventional HDF5 datatypes were required to fully support

these datatypes.

To bridge the gap between the needs of EOS data products and the capabilities of HDF, new EOS

specific datatypes – Point, Swath, and Grid – were defined within the HDF framework. Each of these

new datatypes was constructed using conventions for combining standard HDF datatypes and is

supported by an Application Programming Interface (API) which aids the data product user or producer

in the application of the conventions. The APIs allow data products to be created and manipulated in

ways appropriate to each datatype, without regard to or the users needing to manipulate the underlying

HDF objects.

The sum of these APIs comprise the HDF-EOS library. The Point interface is designed to support data

that has associated geolocation information, but is not organized in any well defined spatial or temporal

way. The Swath interface is tailored to support time-ordered data such as satellite swaths (which consist

of a time-ordered series of scanlines), or profilers (which consist of a time-ordered series of profiles).

The Grid interface is designed to support data that has been stored in a rectilinear array based on a well

defined and explicitly supported projection. Profile data is Swath-like data without geo-referencing

information attached.

The original HDF-EOS library was constructed beginning in 1995, using the version of HDF available at

the time, HDF4. The HDF-EOS version was called HDF-EOS2, the version number being a historical

artifact. In 2001, a completely new version of HDF was introduced, HDF5. This library was based on a

different data model (HDF5 for HDF4 Users: a short guide, National Center for Supercomputing

Applications, University of Illinois, Urbana-Champaign, December 3, 2002,

http://hdf.ncsa.uiuc.edu/HDF5/papers/papers/h4toh5/HDF5forHDF4Users.pdf) and had an interface

which was very different than that of HDF4. HDF-EOS was upgraded to support HDF5 and is called

HDF-EOS5. This new version of HDF-EOS supports the same data model as does HDF-EOS2 and

maintains the HDF-EOS2 interface to the maximum extent possible. Besides the three data types

mentioned above, i.e. Grid, Swath, and Point, HDF-EOS5 also supports “Zonal Average” data type

which is basically a swath like datatype without geolocation mapping.

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

5

At the present time, most EOS data products, several petabytes worth (10
15
), are produced and stored in

HDF-EOS2. A growing volume of data is being created in HDF-EOS5 and both libraries are supported

by NASA. Production of EOS data will continue so long as instruments continue to operate.

This document presents a proposed standard for HDF-EOS5 Grid and Swath structures. Point and Zonal

Average (ZA) structures will not be addressed.

5.1 What is HDF-EOS5?

HDF-EOS5 has three components: (1) a data model which describes Grid, Point, Swath , and ZA

structures, (2) a file format and (3) an Application Programming Interface (API) which implements the

data model and enforces the standard.

The data model provides the format to allow creation, storage, and access to Grid, Point, Swath, and

ZA structures. It specifies the packaging of geolocation data, science data, and metadata. The data

model for Grid and Swath data is described in Section 6.

The file format describes how the HDF-EOS5 data structures are represented in basic HDF5 objects.

These objects in turn specify how the structures are stored in memory, or on disk or other media.

HDFEOS5 is self-describing in that the internal structure of the files is described within the file. The

file format, which is represented by the HDF5 file format is described in Section 7.

The API implements the data model in a number of programming languages, including C, FORTRAN

and C++. This library, which is represented by an Application Programming Interface (API) is

described in Section 8.

5.2 Motivation for Proposing Standardization

HDF5 is the underlying format for HDF-EOS5. HDF-EOS is the standard format and I/O library for the

Earth Observing System (EOS) Data and Information System (EOSDIS). EOSDIS is the data system

supporting a coordinated series of polar-orbiting and low inclination satellites for long-term global

observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. HDF-EOS2 is the

standard for the EOS Terra and Aqua missions and HDF-EOS5 is the standard for the EOS Aura

mission. There is a possibility that HDF-EOS2 files will be converted to HDF-EOS5 during future re-

processing.

We note several successes using the HDF-EOS standard. The EOS MODIS instrument team used Swath

and Grid formats for its' science product storage and distribution format. Science products comprised

many disciplines, including Oceanographic, Land and Atmospheric data. The team had more than thirty

Principle Investigators supplying data processing algorithms and code. A single integrator at NASA

Goddard Space Flight Center was charged with implementing the algorithms, integrating processing

code and formatting output data. Use of HDF-EOS as a team saved considerable code development and

schedule.

A second example of efficiency associated with use of the HDF-EOS standard was found in the work of

the EOS Aura team. A standard was developed and adopted for all four Aura instruments. Data

produced in HDF-EOS5, were than in common format across science data produced by platform

instruments.

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

6

The EOS Atmospheric Infrared Sounder (AIRS) instrument is a facility instrument with dozens of

NASA and NOAA users. This is a profiling instrument, which stores data in a very different format

than does MODIS, which is an imaging instrument. The team comprised of many Principle

Investigators, each generating their own production algorithms and data products, successfully

packaged its’ products in the HDF-EOS format.

The next major Earth observing system, NPOESS will use HDF5 to store and distribute its data. There

will be considerable overlap in the kinds of measurements made by EOS and by NPOESS instruments.

There will be a need to compare data to develop a consistent long term data record. Community

standardization of both HDF5 and HDF-EOS5 extensions will be of great importance. (HDF5 Draft

Community Standard, ESE RFC, 2005)

EOS data stored in HDF-EOS2 and HDF-EOS5 are of fundamental importance to current and future

research on global climate change and other physical, chemical and biological processes impacting our

earth’s environment. ESE standardization of HDFEOS5 will help to accelerate its adoption among the

earth science communities, and many others as well, both through an increase in the number of

developers writing to the specification and using the API, and through an increase in the number of

those providing their data in HDFEOS5. We don’t propose an ESE standard for HDF-EOS2, but refer

the reader to numerous documents describing the format. (HDF-EOS5 Interface Based on HDF5, 2005)

We again note that the HDF-EOS2 data model for Grid and Swath data is the same as that of HDF-

EOS5. The API of HDF-EOS 5 has the same look and feel of its predecessor, but carry parameter

additions necessitated by major differences between HDF4 and HDF5.

ESE standardization will also validate HDF5 to vendors of software applications important to users of

HDF-EOS5, increasing the likelihood that these vendors will support the standard.

6. HDF-EOS5 Data Model

6.1 SWATH Data Model

The Swath concept for HDF-EOS is based on a typical satellite swath, where an instrument takes a

series of scans perpendicular to the ground track of the satellite as it moves along that ground track.

Figure 6.1-1 below shows this traditional view of a swath.

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

7

Along Track

Scan Lines

Cross Track

Satellite

Figure 6.1-1. A Typical Satellite Swath: Scanning Instrument

Another type of data that the Swath is equally well suited to arise from a sensor that measures a vertical

profile, instead of scanning across the ground track. The resulting data resembles a standard Swath

tipped up on its edge. Figure 6.1-2 shows how such a Swath might look.

In fact, the two approaches shown in Figures 6.1-1 and 6.1-2 can be combined to manage a profiling

instrument that scans across the ground track. The result would be a three dimensional array of

measurements where two of the dimensions correspond to the standard scanning dimensions (along the

ground track and across the ground track), and the third dimension represents a height above the Earth or

a range from the sensor. The "horizontal" dimensions can be handled as normal geographic dimensions,

while the third dimension can be handled as a special "vertical" dimension.

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

8

In
st
ru
m
en
t P
at
h

P
ro
fi
le
s

Instrument

Along Track

Figure 6.1-2. A Swath Derived from a Profiling Instrument

A standard Swath is made up of four primary parts: data fields, geolocation fields, dimensions, and

dimension maps. An optional fifth part called an index can be added to support certain kinds of access to

Swath data. Each of the parts of a Swath is described in detail in the following subsections.

6.1.1 Data Fields

Data fields are the main part of a Swath from a science perspective. Data fields usually contain the raw

data (often as counts) taken by the sensor or parameters derived from that data on a value-for-value

basis. All the other parts of the Swath exist to provide information about the data fields or to support

particular types of access to them. Data fields typically are two-dimensional arrays, but can have as few

as one dimension or as many as eight, in the current library implementation. They can have valid 32 and

64-bit floating point numbers, 8,16,32 and 64-bit integers, etc.

6.1.2 Geolocation Fields

Geolocation fields allow the Swath to be accurately tied to particular points on the Earth’s surface. To

do this, the Swath interface requires the presence of at least a time field (“Time”) or a latitude/longitude

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

9

field pair (“Latitude”1 and “Longitude”). Geolocation fields must be either one- or two-dimensional and

can have 32 or 64-bit types. The “Time” field is always in TAI format.(International Atomic Time, see

SDP Toolkit Users Guide for the ECS Project)

Figure 6.1-3 shows a ‘data view’ of a swath structure. Here, the track parameter can be represented by

time.

1 “Colatitude” may be substituted for “Latitude.”

Scan Lines

Tra
ck

Cross Track

1000

10

3D Data Array

Latitude

Longitude

1000

60
0

Geolocation Array

Sca
nL

ine

Geo
loc

ati
on

Satellite

60
0

Figure 6.1-3 Conceptual View of Example Swath, with 3D Array,
Time/Geolocation Array, and Geolocation Table.

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

10

6.1.3 Dimensions

Dimensions define the axes of the data and geolocation fields by giving them names and sizes. In using

the library, dimensions must be defined before they can be used to describe data or geolocation fields.

The defined dimensions are stored in the structure metadata.

Every axis of every data or geolocation field, then, must have a dimension associated with it. However,

there is no requirement that they all be unique. In other words, different data and geolocation fields may

share the same named dimension. In fact, sharing dimension names allows the Swath interface to make

some assumptions about the data and geolocation fields involved which can reduce the complexity of

the file and simplify the program creating or reading the file.

6.1.4 Dimension Maps

Dimension maps are the glue that holds the Swath together. They define the relationship between data

fields and geolocation fields by defining, one-by-one, the relationship of each dimension of each

geolocation field with the corresponding dimension in each data field. In cases where a data field and a

geolocation field share a named dimension, no explicit dimension map is needed. In cases where a data

field has more dimensions than the geolocation fields, the “extra” dimensions are left unmapped. Like

the dimensions the dimension maps are stored in the structure metadata.

In many cases, the size of a geolocation dimension will be different from the size of the corresponding

data dimension. To take care of such occurrences, there are two pieces of information that must be

supplied when defining a dimension map: the offset and the increment. The offset tells how far along a

data dimension that must be traversed to find the first point to have a corresponding entry along the

geolocation dimension. The increment tells how many points to travel along the data dimension before

the next point is found for which there is a corresponding entry along the geolocation dimension. Figure

6.1-4 depicts a normal dimension map.

Data Dimension

Geolocation Dimension
Mapping
Offset: 1

Increment: 2

1 2 30 4 5 6 7 8 910111213141516171819

1 2 30 4 5 6 7 8 9

Figure 6.1-4. A “Normal” Dimension Map

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

11

The “data skipping” method described above works quite well if there are fewer regularly spaced

geolocation points than data points along a particular pair of mapped dimensions of a Swath. It is

conceivable, however, that the reverse is true – that there are more regularly spaced geolocation points

than data points. In that event, both the offset and increment should be expressed as negative values to

indicate the reversed relationship. The result is shown in Figure 6.1-5. Note that in the reversed

relationship, the offset and increment are applied to the geolocation dimension rather than the data

dimension.

Data Dimension

Geolocation Dimension

Mapping
Offset: -1

Increment: -21 2 30 4 5 6 7 8 9

1 2 30 4 5 6 7 8 910111213141516171819

Figure 6.1-5. A “Backwards” Dimension Map

6.1.5 HDF5 Objects in HDF-EOS 5 Swath Objects

 Figure 6.1-6 shows the relationship between HDF-EOS5 and HDF5 objects. The “SWATHS” object is

an HDF5 group object (see Figure 7.2-1) that contains one or more Swath groups with user defined

names and optional HDF5’s supporting attribute objects. The Swath groups in turn contain three HDF5

groups named “Data Fields”, “Geolocation Fields”, and “Profile Fields”. These three groups, like the

“SWATHS” group, have reserved names and are internally created by HDF-EOS. Besides the group

attributes, which again are simply HDF5 attribute objects, these groups hold HDF5 datasets containing

science data, and geolocation field data for the “Latitude”, “Longitude”, or “Time”. Each data field or

geolocation field also may contain optional dataset related attributes, called local attributes, such as

fillvalue, units, etc. Please note that HDF-EOS5 always creates the attribute “_FillValue” for every data

field and sets its value to zero. The default zero value is replaced with user provided value when user

calls appropriate fillvalue setting routine.

The Profile fields shown in this figure are profile swath fields that are described in section 2.1 and are

depicted in Figure 6.1-2.

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

12

Figure 6.1-6 HDF5 Objects Created by an HDF-EOS5 Program for Swath Objects

“Swath_1”
”

“Swath_N”

”””

Geolocation

Fields Profile Fields
Data Fields

Data
 Field.1 Latitude Longitude

Time Colatitude

Data
Field.n

Profile
Field.1

Profile
Field.n

Group Attribute

<DataFields>:<AttrName>

Local Attribute

<FieldName>:<AttrName

>

Object Attribute

<SwathName>:<AttrName>

“SWATHS” group

HDF5 Group

HDF5 Attribute

HDF5

Dataset

Each Data Field object

can have Attributes

and/or Dimension Scales

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

13

6.2 GRID Data Model

As described in Section 6.1, Swaths carry geolocation information as a series of individually located

points (tie points or ground control points). Grids, though, carry their geolocation in a much more

compact form. A grid merely contains a set of projection equations (or references to them) along with

their relevant parameters. Together, these relatively few pieces of information define the location of all

points in the grid. The equations and parameters can then be used to compute the latitude and longitude

for any point in the grid.

Figure 6.2-1. A Data Field in a Mercator-Projected Grid

In loose terms, each data field constitutes a map in a given standard projection. Although there may be

many independent Grids in a single HDF-EOS file, within each Grid only one projection may be chosen

for application to all data fields. Figures 6.2-1 and 6.2-2 show how a single data field may look in a Grid

using two common projections.

There are three important features of a Grid data set: the data fields, the dimensions, and the projection.

Each of these is discussed in detail in the following subsections.

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

14

Figure 6.2-2. A Data Field in an Interrupted Goode’s Homolosine-Projected Grid

6.2.1 Data Fields

The data fields are, of course, the most important part of the Grid. Data fields in a Grid data set are

rectilinear arrays of two or more dimensions. Most commonly, they are simply two-dimensional

rectangular arrays. Generally, each field contains data of similar scientific nature which must share the

same data type. In general Grid supports all HDF5 supported datatypes. However, some Grid APIs, such

as GD_interpolate, only support a few basic datatypes such as “short integer”, “integer”, “float”, and

‘Double”. The data fields are related to each other by common geolocation. That is, a single set of

geolocation information is used for all data fields within one Grid data set.

6.2.2 Dimensions

Dimensions are used to relate data fields to each other and to the geolocation information. To be

interpreted properly, each data field must make use of the two predefined dimensions: “XDim” and

“YDim”. These two dimensions are defined when the grid is created and are used to refer to the X and Y

dimensions of the chosen projection. Like for swath objects the grid dimensions are stored in the

structure metadata. Although there is a limit of eight dimensions a data field in a Grid data set my have,

it is not likely that many fields will need more than three: the predefined dimensions “XDim” and

“YDim” and a third dimension for depth or height.

6.2.3 Projections

The projection is really the heart of the Grid structure. Without the use of a projection, the Grid would

not be substantially different from a Swath. The projection provides a convenient way to encode

geolocation information as a set of mathematical equations which are capable of transforming Earth

coordinates (latitude and longitude) to X-Y coordinates on a sheet of paper.

The choice of a projection to be used for a Grid is a critical decision for a data product designer. There

are a large number of projections that have been used throughout history. In fact, some projections date

back to ancient Greece. Many projections are supported by the HDF-EOS API, including: Geographic,

Universal Transverse Mercator, Albers Conical Equal Area, Lambert Conformal, Mercator, Polar

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

15

Stereographic, Polyconic, Transverse Mercator, Lambert Azimuthal Equal Area, Hotin Oblique

Mercator, Space Oblique, Interrupted Goode’s Homolosine, Integerized Sinusoidal, and Cylindrical

Equal area.

The HDF-EOS5 API assumes that the data producer will use to create the data the General Coordinate

Transformation Package (GCTP), a library of projection software available from the U.S. Geological

Survey. The Grid interface allows the data producer to specify the exact GCTP parameters used to

perform the projection and will provide for basic subsetting of the data fields by latitude/longitude

bounding box.

See section 8.3 below for further details on the usage of the GCTP package.

6.2.4 HDF5 Objects in HDF-EOS 5 Grid Objects

Figure 6.2-3 shows the relationship between HDF-EOS5 Grid objects and HDF5 objects. As

shown HDF-EOS5 creates a HDF5 group called “GRIDS” to hold all Grid objects. The Grid

objects, which again are HDF5 groups with user defined names, contain “Data Fields” group and

Grid related attributes called object attributes. The group “Data Fields” is the group that holds

the user defined data field datasets and optional group attributes. In addition to the science data

the datasets contain field attributes that are local to the field. A few examples of such attributes

are units, fillvalue, etc. Figure 6.2-3 shows an example of a grid structure and a structure

metadata associated with the grid. Again, as in swath all attributes are optional except the

“_FillValue” attribute for the datasets which are created internally be HDF-EOS5 for every

dataset and are assigned values other than zero when user sets the value using Grid’s fillvalue

setting routine.

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

16

Figure 6.2-3 Grid objects created in an HDF-EOS5 file. (“GRIDS” and “Data Fields”
groups are defined internally by HDF-EOS5).

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

17

Figure 6.2-5 shows a schematic of a grid structure containing two and three dimensional arrays. It also

shows part of the related structure metadata stored in “StructMetadata” dataset shown in Figure 7.2-1.

7. HDF-EOS5 File Format

7.1 Introduction

In this Section, we present a brief introduction to the file format of HDF-EOS5. A detailed discussion, as

well as an operational description of HDF-EOS5 can be found in HDF-EOS5 Interface Based on HDF5

Project (Volume 1 and Volume 2, 2005). HDF-EOS5 is composed of HDF5 objects. The file format of

HDF-EOS, the ordering and meaning of bytes stored on disk or memory is therefore the same as the file

format of HDF5. (see HDF5 User Documentation Release, U. of Illinois, Urbana Champaign, 2004)

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

18

7.2 HDF-EOS5 File Format

7.2.1 Overview

The HDF5 File Format defines the low-level objects in terms of a sequence of bytes. The HDF5

persistent objects are described in terms of the low-level objects, thus creating a mapping from the

HDF5 data model to the set of byte sequences (HDF5 File Format, NCSA, U. of Illinois, Urbana-

Champaign, 2004) HDF-EOS5 on the other hand maps HDF-EOS objects, structures, onto basic HDF5

objects such as Groups, Datasets, and Attributes. Therefore, in the following section we will see how

HDF-EOS5 objects are constructed using HDF5 objects.

7.2.2 Structure of an HDF-EOS5 File

An HDF-EOS5 file is any valid HDF5 file (i.e., any file created by the NCSA HDF5 library), that

contains a family of global attributes called “coremetadata.X”, where “.X” is a sequence number

beginning at 0 and running as high as 9. Optional data objects which may appear in an HDFEOS file

include, another family of global attributes called “archivemetadata.X” and any number of Swath and/or

Grid data structures. The existence of Swath or Grid structures in an HDF-EOS file implies the existence

of another family of global attributes called “StructMetadata.X”.

HDF-EOS5 related global attributes such as “StructMetadata” or “coremetadata” are written in a group

called “HDFEOS INFORMATION”. These attributes are basically either supplemental HDF5 objects,

such as “HDFEOS Version” attribute in the “HDFEOS INFORMATION” group, or HDF5 datasets with

ASCII contents. These global attributes provide information on the structure of an HDF-EOS file or

information on the data granule that file contains. Other optional user-added global attributes such as

“PGEVersion”, “OrbitNumber”, etc. are written as HDF5 attributes into a group called “FILE

ATTRIBUTES” (see Figure 7.2-1). These attributes, written in the form of HDF5’s supplemental

attribute objects, usually provide quick reference to the origin/nature of the data. Please note that the

“HDFEOS Version” attribute is created internally by HDF-EOS5 upon creating output HDF file.

7.2.3 Core Metadata

Core metadata represent information which is used to populate searchable database tables within the

ECS archives. Data users use this information to locate particular HDF-EOS5 data granules. These

metadata, which are defined in Release B-1 Earth Sciences Data Model, are also copied in the

“coremetadata.X” (X= 0,...,n) family of global HDF-EOS 5 attributes within an HDF-EOS file. The

syntax of these metadata is compliant with the Object Description Language (ODL)[

http://pds.jpl.nasa.gov/documents/sr/Chapter12.pdf]. Tools for formatting, accessing and writing core

metadata are provided in the EOS Science Data Processing (SDP) Toolkit. (SDP Toolkit Users Guide

for the ECS Project).

7.2.4 Archive Metadata

Archive metadata represent information that, by definition, will not be searchable. It contains whatever

information the file creator considers useful to be in the file, but which will not be directly accessible by

ECS databases. Archive metadata are also accessed via SDP Toolkit calls and are written in ODL syntax

into the “archivemetadata.X”, (X=0,...,n) family of global attributes. (see SDP Toolkit Users Guide for

the ECS Project).

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

19

7.2.5 Structural Metadata

Structural metadata describe the contents and structure of an HDF-EOS file. That is, these metadata

describe how geolocation, temporal, projection information are to be associated with the data itself.

Structural metadata are present in the file only if the HDF-EOS library has been invoked to create a Grid

or Swath structure. These metadata are stored in the “StructMetadata.X” family of global attributes and

are created and maintained by the HDF-EOS library. They are also stored in ODL format. These

metadata are not intended to be directly accessed by data producers or users. Therefore, all access to

these metadata should be via appropriate function calls in the HDF-EOS library.

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

20

Figure 7.2-1 Top Level of HDF-EOS5 File

7.2.6 Swath Structure

Swath structures are implemented as a hierarchy of HDF5 groups containing a number of other HDF5

groups, datasets and/or HDF5’s supplemental attribute objects. All groups, datasets and attributes that

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

21

are part of any Swath structure carry the class “SWATH”. All one-dimensional and multi-dimensional

fields are implemented as HDF5 datasets. The following limitations apply to Swath structures:

• The reserved field names for special purpose geolocation fields are “Longitude”, “Latitude”,

“Colatitude”, and “Time” (case sensitive). These fields are subject to the following requirements:

Field Name Data Type Format

Longitude float32 or float64 Decimal degrees on the range [-180.0, 180.0)

Latitude float32 or float64 Decimal degrees on the range [-90.0, 90.0]

Colatitude float32 or float64 Decimal degrees on the range [0.0, 180.0]

Time float64 TAI93 (seconds until(-)/since(+) midnight, 1/1/93)

These fields may be one- or two-dimensional.

Non-reserved fields may have up to 8 dimensions.

An “unlimited” dimension must be the first dimension (in C-order).

For all multi-dimensional fields in scan- or profile-oriented Swaths, the dimension representing the

“along track” dimension must precede the dimension representing the scan or profile dimension(s).

Compression is selectable at the field level within a Swath. All HDF5-supported compression methods

are available through the HDF-EOS5 library. The compression method is stored within the file.

Subsequent use of the library will un-compress the file. As in HDF5 the data needs to be chunked

before the compression is applied.

Field names may be up to 64 characters in length.

Any character can be used with the exception of, ",", ";", " and "/".

Names are case sensitive.

Names must be unique within a particular Swath structure.

7.2.7 Grid Structure

Grid structures are implemented as a hierarchy of HDF5 groups containing several datasets and

attributes. All groups, datasets and attributes that are part of any Grid structure carry the class “GRID”.

Each data field within a Grid structure is implemented as a single dataset. The following limitations

apply to Grid structures:

Fields may have from 2 to 8 dimensions.

Compression is selectable at the field level within a Grid. All HDF5-supported compression methods are

available through the HDF-EOS5 library. Table 7-1 shows all supported compression methods.

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

22

Table 7-1. Compression Methods
Compression Code Value Explanation

 HDFE_COMP_NONE 0 No Compression

 HDFE_COMP_RLE 1 Run Length Encoding Compression (not supported)

HDFE_COMP_NBIT 2 NBIT Compression

HDFE_COMP_SKPHUFF 3 Skipping Huffman (not supported)

HDFE_COMP_DEFLATE 4 gzip Compression

HDFE_COMP_SZIP_CHIP
5

szip Compression, Compression exactly as in
hardware

HDFE_COMP_SZIP_K13 6 szip Compression, allowing k split = 13 Compression

HDFE_COMP_SZIP_EC 7 szip Compression, entropy coding method

HDFE_COMP_SZIP_NN 8 szip Compression, nearest neighbor coding method

HDFE_COMP_SZIP_K13orEC

9
szip Compression, allowing k split = 13 Compression,
or entropy coding method

HDFE_COMP_SZIP_K13orNN

10
szip Compression, allowing k split = 13 Compression,
or nearest neighbor coding method

HDFE_COMP_SHUF_DEFLATE 11 shuffling + deflate(gzip) Compression

HDFE_COMP_SHUF_SZIP_CHIP 12 shuffling + Compression exactly as in hardware

HDFE_COMP_SHUF_SZIP_K13 13 shuffling + allowing k split = 13 Compression

HDFE_COMP_SHUF_SZIP_EC 14 shuffling + entropy coding method

HDFE_COMP_SHUF_SZIP_NN 15 shuffling + nearest neighbor coding method

HDFE_COMP_SHUF_SZIP_K13orEC
16

shuffling + allowing k split = 13 Compression, or
entropy coding method

HDFE_COMP_SHUF_SZIP_K13orNN

17
shuffling + allowing k split = 13 Compression, or
nearest neighbor coding method

NOTE: For Compression data
storage must be CHUNKED first

The compression method is stored within the file. Subsequent use of the library will un-compress the

file. The data should be chunked before compression is applied.

Field names may be up to 64 characters in length.

Any character can be used with the exception of, ",", ";", " and "/".

Names are case sensitive.

Names must be unique within a particular Grid structure.

7.2.8 Hybrid HDF-EOS5 and HDF Files

An HDF-EOS file can contain any number of Grid, Point, Swath, Zonal Average, and Profile data

structures. Unlike the HDF-EOS2 files which have two Gigabyte size limits, HDF-EOS5 file has no size

limits. An HDF-EOS5 file can also contain plain HDF5 objects for special purposes. HDF5 objects

must be accessed by the HDF5 library and not by HDFEOS5 extensions. A user should note however,

that inclusion of HDF5 objects will require more knowledge of file contents on the part of an

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

23

applications developer or data user. A user should also note that HDF5 is a directory structure and that a

file containing 1000's of objects could cause program execution slow-downs.

8. HDF-EOS 5 Library/ Programming Model

8.1 The Swath Data Interface

The SW interface consists of routines for storing, retrieving, and manipulating data in swath data sets.

8.1.1 SW API Routines

All C routine names in the swath data interface have the prefix “HE5_SW” and the equivalent

FORTRAN routine names are prefixed by “he5_sw.” The SW routines are classified into the following

categories:

• Access routines initialize and terminate access to the SW interface and swath objects (including

opening and closing files).

• Definition routines allow the user to set key features of a swath objects.

• Basic I/O routines read and write data and metadata to a swath objects.

• Inquiry routines return information about data contained in a swath objects

• Subset routines allow reading of data from a specified geographic region.

The SW function calls are listed in Table 8-1 and are described in detail in the 2
nd
 volume of HDF-EOS5

Users Guide (HDF-EOS Interface Based on HDF5, Volume 2: Function Reference Guide, Technical

Paper, 175-EMD-002 Revision 03, April 2005).

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

24

Table 8-1. Summary of the Swath Interface (1 of 3)

 Routine Name

Category C FORTRAN Description

 HE5_SWopen he5_swopen Opens or creates HDF file in order to create, read, or
write a swath

 HE5_SWcreate he5_swcreate Creates a swath within the file

Access HE5_SWattach he5_swattach Attaches to an existing swath within the file

 HE5_SWdetach he5_swdetach Detaches from swath interface

HE5_SWclose he5_swclose Closes file

HE5_SWdefdim he5_swdefdim Defines a new dimension within the swath

 HE5_SWdefdimmap he5_swdefmap Defines the mapping between the geolocation and
data dimensions

HE5_SWdefidxmap he5_swdefimap Defines a non-regular mapping between the
geolocation and data dimension

 HE5_SWdefgeofield he5_swdefgfld Defines a new geolocation field within the swath

 HE5_SWdefdatafield he5_swdefdfld Defines a new data field within the swath

Definition HE5_SWdefcomp he5_swdefcomp Defines a field compression scheme

 HE5_SWdefchunk he5_swdefchunk Define chunking parameters

 HE5_SWdefcomchunkhe5_swdefcomch Defines compression with automatic chunking

 HE5_SWsetalias he5_swsetalias Defines alias for data field

 HE5_SWdropalias he5_swdrpalias Removes alias from the list of field aliases

 HE5_SWfldrename he5_swfldrnm Changes the field name

 HE5_SWwritefield he5_swwrfld Writes data to a swath field

 HE5_SWwritegeometahe5_swwrgmeta Writes field metadata for an existing swath
geolocation field

 HE5_SWwritedatametahe5_swwrdmeta Writes field metadata for an existing swath data field

 HE5_SWreadfield he5_swrdfld Reads data from a swath field.

 HE5_SWwriteattr he5_swwrattr Writes/updates attribute in a swath

Basic I/O HE5_SWreadattr he5_swrdattr Reads attribute from a swath

 HE5_SWwritegeogrpattrhe5_swwrgeogattr Writes/updates group Geolocation Fields attribute in
a swath

 HE5_SWwritegrpattr he5_swwrgattr Writes/updates group Data Fields attribute in a swath

 HE5_SWwritelocattr he5_swwrlattr Write/updates local attribute in a swath

 HE5_SWreadgeogrpattrhe5_swrdgeogattr Reads attribute in Geolocation Fields from swath

 HE5_SWreadgrpattr he5_swrdgattr Reads attribute in Data Fields from a swath

 HE5_SWreadlocattr he5_swrdlattr Reads attribute from a swath

 HE5_SWsetfillvalue he5_swsetfill Sets fill value for the specified field

 HE5_SWgetfillvalue he5_swgetfill Retrieves fill value for the specified field

HE5_SWaliasinfo he5_swaliasinfo Retrieves information about field aliases

HE5_SWinqdims he5_swinqdims Retrieves information about dimensions defined in
swath

 HE5_SWinqmaps he5_swinqmaps Retrieves information about the geolocation relations
defined

Inquiry HE5_SWinqidxmaps he5_swinqimaps Retrieves information about the indexed
geolocation/data mappings defined

 HE5_SWinqgeofieldshe5_swinqgflds Retrieves information about the geolocation fields
defined

 HE5_SWinqdatafieldshe5_swinqdflds Retrieves information about the data fields defined

 HE5_SWinqattrs he5_swinqattrs Retrieves number and names of attributes defined

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

25

Table 8-1. Summary of the Swath Interface (2 of 3)

 Routine Name

Category C FORTRAN Description

 HE5_SWinqdatatype he5_swidtype Returns data type information about specified
fields in swath

 HE5_SWinqdfldalias he5_swinqdfldalias Returns information about data fields & aliases
defined in swath

 HE5_SWinqgfldalias he5_swinqgfldalias Returns information about geolocation fields &
aliases defined in swath

 HE5_SWinqgeogrpattrs he5_swinqgeogattrsRetrieve information about group Geolocation
Fields attributes defined in swath

 HE5_SWinqgrpattrs he5_swinqgattrs Retrieve information about group Data Fields
attributes defined in swath

 HE5_SWinqlocattrs he5_swinqlattrs Retrieve information about local attributes
defined in swath

 HE5_SWlocattrinfo he5_swlocattrinfo Returns information about a data field’s local
attribute(s)

Inquiry HE5_SWnentries he5_swnentries Returns number of entries and descriptive string
buffer size for a specified entity

 HE5_SWdiminfo he5_swdiminfo Retrieve size of specified dimension

 HE5_SWchunkinfo he5_swchunkinfo Retrieve chunking information

 HE5_SWmapinfo he5_swmapinfo Retrieve offset and increment of specified
geolocation mapping

HE5_SWidxmapinfo he5_swimapinfo Retrieve offset and increment of specified
geolocation mapping

HE5_SWattrinfo he5_swattrinfo Returns information about swath attributes

 HE5_SWgeogrpattrinfo he5_swgeogattrinfo Returns information about group Geolocation
Fields attribute

 HE5_SWgrpattrinfo he5_swgattrinfo Returns information about group Data Fields
attribute

 HE5_SWfieldinfo he5_swfldinfo Retrieve information about a specific geolocation
or data field

 HE5_SWcompinfo he5_swcompinfo Retrieve compression information about a field

 HE5_SWinqswath he5_swinqswath Retrieves number and names of swaths in file

 HE5_SWregionindex he5_swregidx Returns information about the swath region ID

 HE5_SWupdateidxmap he5_swupimap Update map index for a specified region

 HE5_SWgeomapinfo he5_swgmapinfo Retrieve type of dimension mapping for a
dimension

 HE5_SWdefboxregion he5_swdefboxreg Define region of interest by latitude/longitude

 HE5_SWregioninfo he5_swreginfo Returns information about defined region

 HE5_SWextractregion he5_swextreg Read a region of interest from a field

 HE5_SWdeftimeperiod he5_swdeftmeper Define a time period of interest

Subset HE5_SWperiodinfo he5_swperinfo Returns information about a defined time period

 HE5_SWextractperiod he5_swextper Extract a defined time period

 HE5_SWdefvrtregion he5_swdefvrtreg Define a region of interest by vertical field

 HE5_SWindexinfo he5_swindexinfo Returns the indices about a subsetted region

 HE5_SWdupregion he5_swdupreg Duplicate a region or time period

 HE5_PRdefine he5_prdefine Defines profile data structure

 HE5_PRread he5_prread Reads profile data

Profile HE5_PRwrite he5_prwrite Writes profile data

 HE5_PRinquire he5_prinquire Retrieves information about profiles

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

26

 HE5_PRinfo he5_prinfo Return information about profile

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

27

Table 8-1. Summary of the Swath Interface (3 of 3)

 Routine Name

Category C FORTRAN Description

 HE5_PRreclaimspace Not available Reclaims memory used by data buffer in
HE5_PRread()call

 HE5_PRwritegrpattr he5_prwrgattr Writes/updates group Profile Fields attribute in a
swath

Profile HE5_PRreadgrpattr he5_prrdgattr Reads attribute in group Profile Fields from a
swath

 HE5_PRinqgrpattrs he5_prinqgattrs Retrieves information about group Profile Fields
attributes defined in swath

 HE5_PRgrpattrinfo he5_prgattrinfo Returns information about a group Profile Fields
attribute

HE5_SWmountexternal Not available Mount external data file

HE5_SWreadexternal Not available Read external data set

External

Files

HE5_SWunmount Not available Dismount external data file

HE5_SWsetextdata he5_swsetxdat Set external data set External

Data Sets HE5_SWgetextdata he5_swgetxdat Get external data set

8.1.2 File Identifiers

As with all HDF-EOS5 interfaces, file identifiers in the HE5_SW interface are of hid_t HDF5 type, each

uniquely identifying one open data file. They are not interchangeable with other file identifiers created

with other interfaces such as those created by HE5_GD interface.

8.1.3 Swath Identifiers

Before a swath data set is accessed, it is identified by a name which is assigned to it upon its creation.

The name is used to obtain a swath identifier. After a swath data set has been opened for access, it is

uniquely identified by its swath identifier.

8.1.4 Programming Model

The programming model for accessing a swath data set through the HE5_SW interface is as follows:

1. Open the file and initialize the HE5_SW interface by obtaining a Swath Interface identifier from

a file name.

2. Open or create a swath object by obtaining a swath identifier from a swath name.

3. Perform desired operations on the data set.

4. Close the swath data set by disposing of the swath identifier.

5. Terminate swath access to the file by disposing of the Swath Interface identifier.

The following is a code fragment illustrating the programming model. Appendix A shows the contents

of the output HDF-EOS5 files containing Swath objects. The file is the result of applying h5dump on the

hdf-eos5 output.
 /* In this example we open an HDF-EOS file, (2) create the swath
 object within the file, and define the swath field dimensions.

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

28

 Open a new HDF-EOS swath file, "Swath.he5". Assuming that this
 file may not exist, we are using "H5F_ACC_TRUNC" access code.
 The "HE5_SWopen" function returns the swath file ID, swfid,
 which is used to identify the file in subsequent calls to the
 HDF-EOS library functions. */

 swfid = HE5_SWopen("Swath.he5", H5F_ACC_TRUNC);

 /* Create the swath, "Swath1", within the file */
 SWid = HE5_SWcreate(swfid, "Swath1");
 SWid_index = HE5_SWcreate(swfid, "Swath2");

 /* Define dimensions and specify their sizes */
 status = HE5_SWdefdim(SWid, "GeoTrack", 20);
 status = HE5_SWdefdim(SWid, "GeoXtrack", 10);
 status = HE5_SWdefdim(SWid, "Res2tr", 40);
 status = HE5_SWdefdim(SWid, "Res2xtr", 20);
 status = HE5_SWdefdim(SWid, "Bands", 15);
 status = HE5_SWdefdim(SWid, "ProfDim", 4);

 /* Define "Unlimited" Dimension */
 status = HE5_SWdefdim(SWid, "Unlim", H5S_UNLIMITED);

 /* Once the dimensions are defined, the relationship (mapping) between the
 geolocation dimensions, such as track and cross track, and the data
 dimensions, must be established. This is done through the "HE5_SWdefdimmap"
 function. It takes as input the swath id, the names of the dimensions
 designating the geolocation and data dimensions, respectively, and the
 offset and increment defining the relation.

 In the first example we relate the "GeoTrack" and "Res2tr" dimensions
 with an offset of 0 and an increment of 2. Thus the ith element of
 "Geotrack" corresponds to the 2 * ith element of "Res2tr".

 In the second example, the ith element of "GeoXtrack" corresponds to the
 2 * ith + 1 element of "Res2xtr".

 Note that there is no relationship between the geolocation dimensions
 and the "Bands" dimension. */

 /* Define Dimension Mappings */
 status = HE5_SWdefdimmap(SWid, "GeoTrack", "Res2tr", 0, 2);

 status = HE5_SWdefdimmap(SWid, "GeoXtrack", "Res2xtr", 1, 2);

 /* Define Indexed Mapping */
 IndexMap[0] = 1L;
 IndexMap[1] = 5L;
 IndexMap[2] = 8L;
 IndexMap[3] = 12L;
 IndexMap[4] = 17L;
 IndexMap[5] = 20L;

 status = HE5_SWdefdim(SWid_index, "Res2tr_indexed", 40);
 status = HE5_SWdefdim(SWid_index, "IndexTrack", 6);

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

29

 status = HE5_SWdefidxmap(SWid_index, "IndxTrack", "Res2tr_indexed ", indx);

 /* Create Geofield “Time” and Datafield “Temperature” */
 status = HE5_SWdefgeofield(SWid, "Time", "GeoTrack", NULL,
 H5T_NATIVE_DOUBLE, 0);

 fillvalue = -999.0;
 status = HE5_SWsetfillvalue(SWid, "Temperature", H5T_NATIVE_FLOAT,
 &fillvalue);
 status = HE5_SWdefdatafield(SWid, "Temperature", "Res2tr,Res2xtr",
 NULL,H5T_NATIVE_DOUBLE , 0);

 charcount[0] = 13;
 status = HE5_SWwritelocattr(SWid, "Temperature", "Unit",
 H5T_NATIVE_CHAR,charcount,"Degree Kelvin");

 /* Close the swath interface */
 status = HE5_SWdetach(SWid);
 status = HE5_SWdetach(SWid_index);

 /* Close the swath file */
 status = HE5_SWclose(swfid);

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

30

 8.2 The Grid Data Interface

The GD interface consists of routines for storing, retrieving, and manipulating data in grid data sets.

8.2.1 GD API Routines

All C routine names in the grid data interface have the prefix “HE5_GD” and the equivalent FORTRAN

routine names are prefixed by “he5_gd.” The GD routines are classified into the following categories:

• Access routines initialize and terminate access to the GD interface and grid data sets (including

opening and closing files).

• Definition routines allow the user to set key features of a grid data set.

• Basic I/O routines read and write data and metadata to a grid data set.

• Inquiry routines return information about data contained in a grid data set.

• Subset routines allow reading of data from a specified geographic region.

The GD function calls are listed in Table 8-2 and are described in detail in the Software Reference

Guide that accompanies this document.

Table 8-2. Summary of the Grid Interface (1 of 2)

 Routine Name

Category C FORTRAN Description

 HE5_GDopen he5_gdopen Creates a new file or opens an existing one

 HE5_GDcreate he5_gdcreate Creates a new grid in the file

Access HE5_GDattach he5_gdattach Attaches to a grid

 HE5_GDdetach he5_gddetach Detaches from grid interface

 HE5_GDclose he5_gdclose Closes file

 HE5_GDdeforigin he5_gddeforigin Defines origin of grid pixel

 HE5_GDdefdim he5_gddefdim Defines dimensions for a grid

 HE5_GDdefproj he5_gddefproj Defines projection of grid

Definition HE5_GDdefpixreg he5_gddefpixreg Defines pixel registration within grid cell

 HE5_GDdeffield he5_gddeffld Defines data fields to be stored in a grid

 HE5_GDdefcomp he5_gddefcomp Defines a field compression scheme

 HE5_GDblkSOMoffset None This is a special function for SOM MISR data.
Write block SOM offset values.

HE5_GDdefcomtile he5_gddefcomtle Defines compression with automatic tiling

HE5_GDsetalias he5_gdsetalias Defines alias for data field

 HE5_GDdropalias he5_gddrpalias Removes alias from a list of field aliases

 HE5_GDwritefieldmeta he5_gdwrmeta Writes metadata for field already existing in
file

 HE5_GDwritefield he5_gdwrfld Writes data to a grid field.

 HE5_GDreadfield he5_gdrdfld Reads data from a grid field

Basic I/O HE5_GDwriteattr he5_gdwrattr Writes/updates attribute in a grid.

 HE5_GDwritelocattr he5_gdwrlattr Writes/updates local attribute in a grid

 HE5_GDwritegrpattr he5_gdwrgattr Writes/updates group attribute in a grid

 HE5_GDreadattr he5_gdrdattr Reads attribute from a grid

 HE5_GDreadgrpattr he5_gdrdgattr Reads group attribute from a grid

 HE5_GDreadlocattr he5_gdrdlattr Reads local attribute from a grid

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

31

 HE5_GDsetfillvalue he5_gdsetfill Sets fill value for the specified field

 HE5_GDgetfillvalue he5_gdgetfill Retrieves fill value for the specified field

 HE5_GDinqdims he5_gdinqdims Retrieves information about dimensions
defined in grid

 HE5_GDinqfields he5_gdinqdflds Retrieves information about the data fields
defined in grid

 HE5_GDinqattrs he5_gdinqattrs Retrieves number and names of attributes
defined

Inquiry HE5_GDinqlocattrs he5_gdinqlattrs Retrieves information about local attributes
defined for a field

 HE5_GDinqgrpattrs he5_gdinqgattrs Retrieves information about group attributes
defined in grid

HE5_GDnentries he5_gdnentries Returns number of entries and descriptive
string buffer size for a specified entity

HE5_GDaliasinfo he5_gdaliasinfo Retrieves information about aliases

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

32

Table 8-2. Summary of the Grid Interface (2 of 2)

 Routine Name

Category C FORTRAN Description

HE5_GDgridinfo he5_gdgridinfo Returns dimensions of grid and X-Y
coordinates of corners

HE5_GDprojinfo he5_gdprojinfo Returns all GCTP projection information

HE5_GDdiminfo he5_gddiminfo Retrieves size of specified dimension.

 HE5_GDcompinfo he5_gdcompinfo Retrieves compression information about a
field

 HE5_GDfieldinfo he5_gdfldinfo Retrieves information about a specific field in
the grid

Inquiry HE5_GDinqgrid he5_gdinqgrid Retrieves number and names of grids in file

 HE5_GDinqfldalias he5_gdinqfldalias Returns information about data fields &
aliases defined in grid

 HE5_GDinqdatatype he5_gdinqdatatype Returns data type information about specified
fields in grid

HE5_GDattrinfo he5_gdattrinfo Returns information about grid attributes

HE5_GDgrpattrinfo he5_gdgattrinfo Returns information about a grid group
attribute

 HE5_GDlocattrinfo he5_gdlattrinfo Returns information about a Data Field’s local
attribute(s)

 HE5_GDorigininfo he5_gdorginfo Returns information about grid pixel origin

 HE5_GDpixreginfo he5_gdpreginfo Returns pixel registration information for
given grid

 HE5_GDdefboxregion he5_gddefboxreg Defines region of interest by latitude/longitude

HE5_GDregioninfo he5_gdreginfo Returns information about a defined region

HE5_GDextractregion he5_gdextrreg Read a region of interest from a field

HE5_GDdeftimeperiod he5_gddeftmeper Define a time period of interest

Subset HE5_GDdefvrtregion he5_gddefvrtreg Define a region of interest by vertical field

 HE5_GDgetpixels he5_gdgetpix Get row/columns for lon/lat pairs

 HE5_GDgetpixvalues he5_gdgetpixval Get field values for specified pixels

 HE5_GDinterpolate he5_gdinterpolate Perform bilinear interpolation on a grid field

 HE5_GDdupregion he5_gddupreg Duplicate a region or time period

HE5_GDdeftile he5_gddeftle Define a tiling scheme Tiling

HE5_GDtileinfo he5_gdtileinfo Retrieve tiling information

Utility HE5_GDrs2ll he5_gdrs2ll Convert (r,s) coordinates to (lon,lat) for EASE
grid

HE5_GDsetextdata he5_gdsetxdat Set external data set External

Data Sets HE5_GDgetextdata he5_gdgetxdat Get external data set

8.2.2 File Identifiers

As with all HDF-EOS interfaces, file identifiers in the GD interface are of hid_t HDF5 type, each

uniquely identifying one open data file. They are not interchangeable with other file identifiers created

with other interfaces.

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

33

8.2.3 Grid Identifiers

Before a grid data set is accessed, it is identified by a name which is assigned to it upon its creation. The

name is used to obtain a grid identifier. After a grid data set has been opened for access, it is uniquely

identified by its grid identifier.

8.2.4 Programming Model

The programming model for accessing a grid object through the GD interface is as follows:

1. Open the file and initialize the GD interface by obtaining a file ID from a file name.

2. Open OR create a grid object by obtaining a grid ID from a grid name.

3. Perform desired operations on the data set.

4. Close the grid object by disposing of the grid ID.

5. Terminate grid access to the file by disposing of the file ID.

In this example we open the HDF-EOS grid file, "Grid.he5". Assuming that this file may not exist, we

are using the H5F_ACC_TRUNC access code. The "HE5_GDopen" function returns the grid file ID,

gdfid which is used to identify the file in subsequent calls to the HDF-EOS library functions.

Appendix B shows how HDF-EOS 5 Grid objects are related to HDF objects.

 gdfid = HE5_GDopen("Grid.he5", H5F_ACC_TRUNC);

 xdim = 5;
 ydim = 7;
 zonecode = 0;
 spherecode = 0;
 projparm = (double *)calloc(16, sizeof(double));
 for (i = 0; i < 16; i++)
 {
 projparm[i] = 0.0;
 }
 projparm[2] = 0.9996;
 projparm[4] = -75000000.00;
 projparm[6] = 5000000.00;
 uplft[0] = 4855670.77539;
 uplft[1] = 9458558.92483;

 lowrgt[0] = 5201746.43983;
 lowrgt[1] = -10466077.24942;

 /* Create "TM" Grid
 Use default spheriod (Clarke 1866 - spherecode = 0) */
 GDid = HE5_GDcreate(gdfid, "TMGrid", xdim, ydim, uplft, lowrgt);

 /* Define projection */
 status = HE5_GDdefproj(GDid, HE5_GCTP_UTM, zonecode, spherecode,projparm);

 /* Define "Time" Dimension */
 status = HE5_GDdefdim(GDid, "Time", 10);

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

34

 /* Define "Unlimited" Dimension */
 status = HE5_GDdefdim(GDid, "Unlim", H5S_UNLIMITED);

 /*NOTE: This call should always precede the call to GDdeffield()*/
 status = HE5_GDsetfillvalue(GDid, "Voltage", H5T_NATIVE_FLOAT,

 &fillvalue);

 status = HE5_GDdeffield(GDid,"Voltage","XDim,YDim",NULL,H5T_NATIVE_FLOAT,
 0);

 /* Close the grid interface */
 status = HE5_GDdetach(GDid);

 /* Close the grid file */
 status = HE5_GDclose(gdfid);

To access several files at the same time, a calling program must obtain a separate ID for each file to be

opened. Similarly, to access more than one grid object, a calling program must obtain a separate grid ID

for each object. For example, to open two objects stored in two files, a program would execute the

following series of C function calls:

gdfid_1 = HE5_GDopen(filename_1, access_mode);

gdid_1 = HE5_GDattach(gdfid_1, grid_name_1);

gdfid_2 = HE5_GDopen(filename_2, access_mode);

gdid_2 = HE5_GDattach(gdfid_2, grid_name_2);

<Optional operations>

status = HE5_GDdetach(gdid_1);

status = HE5_GDclose(gdfid_1);

status = HE5_GDdetach(gdid_2);

status = HE5_GDclose(gdfid_2);

Because each file and grid object is assigned its own identifier, the order in which files and objects are

accessed is very flexible. However, it is very important that the calling program individually discard

each identifier before terminating. Failure to do so can result in empty or, even worse, invalid files being

produced.

8.3 GCTP Usage

The HDF-EOS Grid API uses the U.S. Geological Survey General Cartographic Transformation

Package (GCTP) to define and subset grid structures. This section describes codes used by the package.

8.3.1 GCTP Projection Codes

HDF-EOS defines a unique code for any supported projection. These codes, defined as GCTP_<short

projection name>, are assigned numbers 0 to 99. Once the projection is defined the projection code

along with the projection parameters are written to the structure metadata (see Figure 6.2-4). HDF-EOS

internally maps projection codes to the assigned numbers.

The following GCTP projections are supported for HDFEOS. The projection codes are used in the grid

API described above:

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

35

GCTP_GEO (0) Geographic

GCTP_UTM (1) Universal Transverse Mercator

GCTP_ALBERS (3) Albers Conical Equal_Area

GCTP_LAMCC (4) Lambert Conformal Conic

GCTP_MERCAT (5) Mercator

GCTP_PS (6) Polar Stereographic

GCTP_POLYC (7) Polyconic

GCTP_TM (9) Transverse Mercator

GCTP_LAMAZ (11) Lambert Azimuthal Equal Area

GCTP_HOM (20) Hotine Oblique Mercator

GCTP_SOM (22) Space Oblique Mercator

GCTP_GOOD (24) Interrupted Goode Homolosine

GCTP_ISINUS1 (31) Integerized Sinusoidal Projection*

GCTP_ISINUS (99) Integerized Sinusoidal Projection*

GCTP_CEA (97) Cylindrical Equal-Area (for EASE grid with corners

in meters)**

GCTP_BCEA (98) Cylindrical Equal-Area (for EASE grid with grid corners

in packed degrees, DMS)**

* The Integerized Sinusoidal Projection was not part of the original GCTP package. It has been added by

ECS. See Level-3 SeaWiFS Data Products: Spatial and Temporal Binning Algorithms. Additional

references are provided in Section 2.

** The Cylindrical Equal-Area Projection was not part of the original GCTP package. It has been added

by ECS. See Notes for section 8.3.4.

In the new GCTP package the Integerized Sinusoidal Projection is included as the 31st projection. The

Code 31 was added to HDFEOS for users who wish to use 31 instead of 99 for Integerized Sinusoidal

Projection.

Note that other projections supported by GCTP will be adapted for futureHDF-EOS Versions as new

user requirements are surfaced. For further details on the GCTP projection package, please refer to

Section 8.3.5 and Appendix G of the SDP Toolkit Users Guide for the ECS Project, April, 2005, (333-

EMD-001, Revision 03).

8.3.2 UTM Zone Codes

The Universal Transverse Mercator (UTM) Coordinate System uses zone codes instead of specific

projection parameters. The table that follows lists UTM zone codes as used by GCTP Projection

Transformation Package. C.M. is Central Meridian

 Zone C.M. Range Zone C.M. Range
 01 177W 180W-174W 31 003E 000E-006E
 02 171W 174W-168W 32 009E 006E-012E
 03 165W 168W-162W 33 015E 012E-018E
 04 159W 162W-156W 34 021E 018E-024E
 05 153W 156W-150W 35 027E 024E-030E
 06 147W 150W-144W 36 033E 030E-036E
 07 141W 144W-138W 37 039E 036E-042E
 08 135W 138W-132W 38 045E 042E-048E

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

36

 09 129W 132W-126W 39 051E 048E-054E
 10 123W 126W-120W 40 057E 054E-060E
 11 117W 120W-114W 41 063E 060E-066E
 12 111W 114W-108W 42 069E 066E-072E
 13 105W 108W-102W 43 075E 072E-078E
 14 099W 102W-096W 44 081E 078E-084E
 15 093W 096W-090W 45 087E 084E-090E
 16 087W 090W-084W 46 093E 090E-096E
 17 081W 084W-078W 47 099E 096E-102E
 18 075W 078W-072W 48 105E 102E-108E
 19 069W 072W-066W 49 111E 108E-114E
 20 063W 066W-060W 50 117E 114E-120E
 21 057W 060W-054W 51 123E 120E-126E
 22 051W 054W-048W 52 129E 126E-132E
 23 045W 048W-042W 53 135E 132E-138E
 24 039W 042W-036W 54 141E 138E-144E
 25 033W 036W-030W 55 147E 144E-150E
 26 027W 030W-024W 56 153E 150E-156E
 27 021W 024W-018W 57 159E 156E-162E
 28 015W 018W-012W 58 165E 162E-168E
 29 009W 012W-006W 59 171E 168E-174E
 30 003W 006W-000E 60 177E 174E-180W

8.3.3 GCTP Spheroid Codes

Clarke 1866 (default) (0)
Clarke 1880 (1)
Bessel (2)
International 1967 (3)
International 1909 (4)
WGS 72 (5)
Everest (6)
WGS 66 (7)
GRS 1980 (8)
Airy (9)
Modified Airy (10)
Modified Everest (11)
WGS 84 (12)
Southeast Asia (13)
Austrailian National (14)
Krassovsky (15)
Hough (16)
Mercury 1960 (17)
Modified Mercury 1968 (18)
Sphereof Radius 6370997m (19)

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

37

Sphereof Radius 6371228m (20)
Sphereof Radius 6371007.181m (21)

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

38

8.3.4 Projection Parameters

Table 8-3. Projection Transformation Package Projection Parameters

Array Elements �

Code & Projection Id 1 2 3 4 5 6 7 8

0 Geographic

1 U T M Lon/Z Lat/Z

3 Albers Conical

Equal_Area

Smajor Sminor STDPR1 STDPR2 CentMer OriginLat Fe Fn

4 Lambert Conformal C Smajor Sminor STDPR1 STDPR2 CentMer OriginLat FE FN

5 Mercator Smajor Sminor CentMer TrueScale FE FN

6 Polar Stereographic Smajor Sminor LongPol TrueScale FE FN

7 Polyconic Smajor Sminor CentMer OriginLat FE FN

9 Transverse Mercator Smajor Sminor Factor CentMer OriginLat FE FN

11 Lambert Azimuthal Sphere CentLon CenterLat FE FN

20 Hotin Oblique Merc A Smajor Sminor Factor OriginLat FE FN

20 Hotin Oblique Merc B Smajor Sminor Factor AziAng AzmthPt OriginLat FE FN

22 Space Oblique Merc A Smajor Sminor IncAng AscLong FE FN

22 Space Oblique Merc B Smajor Sminor Satnum Path FE FN

24 Interrupted Goode Sphere

97 CEA utilized by EASE grid (see

Notes)

Smajor Sminor CentMer TrueScale FE FN

98 BCEA utilized by EASE grid

(see Notes)

Smajor Sminor CentMer TrueScale FE FN

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

39

Table 8-4. Projection Transformation Package Projection Parameters Elements

 Array Element

Code & Projection Id 9 10 11 12 13

0 Geographic

1 U T M

3 Albers Conical Equal_Area

4 Lambert Conformal C

5 Mercator

6 Polar Stereographic

7 Polyconic

9 Transverse Mercator

11 Lambert Azimuthal

20 Hotin Oblique Merc A Long1 Lat1 Long2 Lat2 zero

20 Hotin Oblique Merc B one

22 Space Oblique Merc A PSRev SRat PFlag HDF-EOS Para zero

22 Space Oblique Merc B HDF-EOS Paraone

24 Interrupted Goode

31 & 99 Integerized Sinusoidal NZone RFlag

97 CEA utilized by EASE grid (see

Notes)

98 BCEA utilized by EASE grid (see

Notes)

Where,

Lon/Z Longitude of any point in the UTM zone or zero. If zero, a zone code must be

specified.

Lat/Z Latitude of any point in the UTM zone or zero. If zero, a zone code must be

specified.

Smajor Semi-major axis of ellipsoid. If zero, Clarke 1866 in meters is assumed. It is

recommended that explicit value, rather than zero, is used for Smajor.

Sminor Eccentricity squared of the ellipsoid if less than one, if zero, a spherical form is

assumed, or if greater than one, the semi-minor axis of ellipsoid. It should be noted

that a negative sphere code should be used in order to have user specified Smajor

and Sminor be accepted by GCTP, otherwise default ellipsoid Smajor and Sminor

will be used.

Sphere Radius of reference sphere. If zero, 6370997 meters is used. It is recommended that

explicit value, rather than zero, is used for Sphere.

STDPR1 Latitude of the first standard parallel

STDPR2 Latitude of the second standard parallel

CentMer Longitude of the central meridian

OriginLat Latitude of the projection origin

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

40

FE False easting in the same units as the semi-major axis

FN False northing in the same units as the semi-major axis

TrueScale Latitude of true scale

LongPol Longitude down below pole of map

Factor Scale factor at central meridian (Transverse Mercator) or center of projection

(Hotine Oblique Mercator)

CentLon Longitude of center of projection

CenterLat Latitude of center of projection

Long1 Longitude of first point on center line (Hotine Oblique Mercator, format A)

Long2 Longitude of second point on center line (Hotine Oblique Mercator, frmt A)

 Lat1 Latitude of first point on center line (Hotine Oblique Mercator, format A)

 Lat2 Latitude of second point on center line (Hotine Oblique Mercator, format A)

AziAng Azimuth angle east of north of center line (Hotine Oblique Mercator, frmt B)

AzmthPt Longitude of point on central meridian where azimuth occurs (Hotine Oblique

Mercator, format B)

IncAng Inclination of orbit at ascending node, counter-clockwise from equator (SOM,

format A)

AscLong Longitude of ascending orbit at equator (SOM, format A)

PSRev Period of satellite revolution in minutes (SOM, format A)

SRat Satellite ratio to specify the start and end point of x,y values on earth surface (SOM,

format A -- for Landsat use 0.5201613)

PFlag End of path flag for Landsat: 0 = start of path, 1 = end of path (SOM, frmt A)

Satnum Landsat Satellite Number (SOM, format B)

Path Landsat Path Number (Use WRS-1 for Landsat 1, 2 and 3 and WRS-2 for Landsat 4

and 5.) (SOM, format B)

Nzone Number of equally spaced latitudinal zones (rows); must be two or larger and even

Rflag Right justify columns flag is used to indicate what to do in zones with an odd

number of columns. If it has a value of 0 or 1, it indicates the extra column is on the

right (zero) left (one) of the projection Y-axis. If the flag is set to 2 (two), the

number of columns are calculated so there are always an even number of columns

in each zone.

Notes:

• Array elements 14 and 15 are set to zero.

• All array elements with blank fields are set to zero.

All angles (latitudes, longitudes, azimuths, etc.) are entered in packed degrees/ minutes/ seconds

(DDDMMMSSS.SS) format.

The following notes apply to the Space Oblique Mercator A projection:

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

41

• A portion of Landsat rows 1 and 2 may also be seen as parts of rows 246 or 247. To

place these locations at rows 246 or 247, set the end of path flag (parameter 11) to 1--end

of path. This flag defaults to zero.

• When Landsat-1,2,3 orbits are being used, use the following values for the specified

parameters:

− Parameter 4 099005031.2

− Parameter 5 128.87 degrees - (360/251 * path number) in packed DMS format

− Parameter 9 103.2669323

− Parameter 10 0.5201613

• When Landsat-4,5 orbits are being used, use the following values for the specified

parameters:

− Parameter 4 098012000.0

− Parameter 5 129.30 degrees - (360/233 * path number) in packed DMS format

− Parameter 9 98.884119

− Parameter 10 0.5201613

8.3.4 Additional projections

The following notes apply for BCEA and CEA projections, and EASE grid:

Behrmann Cylindrical Equal-Area (BCEA) projection was used for 25 km global EASE grid.

For this projection the Earth radius is set to 6371228.0m and latitude of true scale is 30 degrees.

For 25 km global EASE grid the following apply:

Grid Dimensions:

Width 1383
Height 586

Map Origin:
Column (r0) 691.0
Row (S0) 292.5
Latitude 0.0
Longitude 0.0

Grid Extent:
 Minimum Latitude 86.72S
 Maximum Latitude 86.72N
 Minimum Longitude 180.00W

Maximum Longitude 180.00E
Actual grid cell size 25.067525km

Grid coordinates (r,s) start in the upper left corner at cell (0.0), with r increasing to the

right and s increasing downward.

Although the projection code and name (tag) kept the same, BCEA projection was generalized to

accept Latitude of True Scales other than 30 degrees, Central Meridian other than zero, and

ellipsoid earth model besides the spherical one with user supplied radius. This generalization

along with the removal of hard coded grid parameters will allow users not only subsetting, but

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

42

also creating other grids besides the 25 km global EASE grid and having freedom to use different

appropriate projection parameters. With the current version one can create the above mentioned

25 km global EASE grid of previous versions using:

Grid Dimensions:

Width 1383
Height 586

Grid Extent:
 UpLeft Latitude 86.72
 LowRight Latitude -86.72
 UpLeft Longitude -180.00

LowRight Longitude 180.00
Projection Parameters:

1) 6371.2280/25.067525 = 254.16263
2) 6371.2280/25.067525 = 254.16263
5) 0.0
6) 30000000.0
7) 691.0
8) –292.5

Also one may create 12.5 km global EASE grid using:

Grid Dimensions:

Width 2766
Height 1171

Grid Extent:
 UpLeft Latitude 85.95
 LowRight Latitude –85.95
 UpLeft Longitude –179.93

LowRight Longitude 180.07
Projection Parameters:

1) 6371.2280/(25.067525/2) = 508.325253
2) 6371.2280/(25.067525/2) = 508.325253
5) 0.0
6) 30000000.0
7) 1382.0
8) –585.0

Any other grids (normalized pixel or not) with generalized BCEA projection can be created

using appropriate grid corners, dimension sizes, and projection parameters. Please note that like

other projections Semi-major and Semi-minor axes will default to Clarke 1866 values (in meters)

if they are set

A new projection CEA (97) was added to GCTP. This projection is the same as the generalized

BCEA, except that the EASE grid produced will have its corners in meters rather than packed

degrees, which is the case with EASE grid produced by BCEA.

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

43

9. Implementation of HDF-EOS 5

9.1 Software implementation

HDF-EOS 5 was first released to the public in 2001. It was developed as a contractual

requirement under the NASA Earth Observing System Data and Information System Program by

L-3 Communications. The software is currently supported under the EOS Maintenance and

Development (EMD) Contract. The most current release of the software library was during

December, 2005 in conjunction with HDF5-1.6.5. The software is supported on the following:

Operating Systems: Solaris (8, 9, 10), Irix6.5, HP 11, AIX, DEC, Windows NT/98/2000/XP,

Linux (including 64-bit Opteron and Itanium), Mac OS X

Compilers: FORTRAN 77/90 & g77/pgf90 , C, C++, gcc, g++

Access to libraries and applications can be found at:

 http://newsroom.gsfc.nasa.gov/sdptoolkit/toolkit.html

 http://newsroom.gsfc.nasa.gov/sdptoolkit/HEG/HEGHome.html

Contact information on access and usage can be had from:

larry.klein@l-3com.com

Abe_Taaheri-NR@raytheon.com

Cid_Praderas-NR@raytheon.com

Landover_PGSTLKIT@raytheon.com

9.2 Applications

Over the past 10 years, dozens of applications have been written to access, browse, process and

analyze data written in HDF-EOS2 and HDF-EOS 5 formats. Many of these applications have

been converted to read and process HDF-EOS 5. Applications that have been provided and are

supported by the EMD Program are:

- HDFView, a Java-based browser providing HDF4, HDF5, HDF-EOS 2 and 5 access.

- heconvert, which converts HDF-EOS 2 - based Grid/Point/Swath structures to HDF-EOS 5

equivalents).

- HE5View, a browser for viewing HDF-EOS5 files.

- HDF-EOS to GeoTIFF converter (HEG). This tool also provides subsetting, reprojection,

stitching, etc.) GeoTIFF output is assessable to Geographical Information System (GIS) tools,

ARCInfo, ERDAS and ENVI.

The commercial data analysis tools, IDL and Matlab also support HDF-EOS 5 files.

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

44

Other applications that provide specialized functionality to data products written in HDF-EOS 5

can be found at:

http://daac.gsfc.nasa.gov/

http://eosweb.larc.nasa.gov/

http://hdf.ncsa.uiuc.edu/hdfeoss.html

10. Operational Experience

The EOS Aura mission is designed to produce, archive and disseminate measurements of

atmospheric constituents such as ozone, carbon monoxide and aerosols. As previously pointed

out, The Aura team adopted HDF-EOS 5 as its’ format of choice. Aura instrument measurements

are stored in a common format developed before mission launch. Data from three of the four

Aura instruments are archived at the Goddard Space Flight Center’s GES Distributed Active

Archive Center (DAAC). Detailed information on products and services can be found at:

http://daac.gsfc.nasa.gov/.

The instrument represented at GSFC are: MLS, OMI and HRDLS. Currently the DAAC holds

about 56,000 data granules and about 3.5 Terabytes of data volume. About 12 GBytes per day

are ingested into the archives. So far total of 35 data products are available. The data are

distributed electronically by user request.

Data from the TES instrument ate archived at the Langley Research Center DAAC. Detailed

information can be found at: http://eosweb.larc.nasa.gov/. There are currently about 5000 data

granules stored in about 2 Terabytes. 36 data products are available.

The MODIS and AIRS instrument teams from the EOS Terra and Aqua missions have produced

data in the earlier HDF-EOS 2 format. Both teams have studied the costs and process of

conversion of HDF-EOS 2 to HDF-EOS 5 format. At this time no decision has been made by

either team on whether to proceed with this conversion during a future re-processing of data.

This process could potentially put Petabytes of data into HDF-EOS 5 format.

Since introduction, more than 400 users have downloaded HDF-EOS and associated application

software and on average 5 to 15 new users request passwords for downloading every month.

These users will be supported by NASA for the indefinite future.

11. References

1. Release 7 SDP Toolkit Users Guide for the EMD Project for Toolkit Version 5.2.13,

Document 333-EMD-001, Revision 03, April 2005,

http://newsroom.gsfc.nasa.gov/sdptoolkit/userguide.html

2. HDF-EOS Interface Based on HDF5, Version 1.6.9, Volume 1: Overview and

Examples, Document 175-EMD-001, Revision 03, April 2005,

http://newsroom.gsfc.nasa.gov/sdptoolkit/userguide.html

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

45

3. HDF-EOS Interface Based on HDF5, Version 1.6.9, Volume 2: Function Reference

Guide, Document 175-EMD-002, Revision 03, April 2005,

http://newsroom.gsfc.nasa.gov/sdptoolkit/userguide.html

4. HDF5 User Documentation Release 1.6.5, November 2005

http://hdf.ncsa.uiuc.edu/HDF5/doc/

5. HDF5 for HDF4 Users: a short guide, National Center for Supercomputing Applications,

University of Illinois, Urbana-Champaign, December 3, 2002,

http://hdf.ncsa.uiuc.edu/HDF5/papers/papers/h4toh5/HDF5forHDF4Users.pdf)

6. HDF5 Draft Community Standard, ESE RFC, 2005

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

46

APPENDIX A Example HDF-EOS5 Swath Output

The following code fragment shows contents of HDF output created by the example code in

Section 8.1.4. It shows how HDF-EOS5 swath objects are mapped onto HDF5 objects.

HDF5 "Swath.he5" {
GROUP "/" {
 GROUP "HDFEOS" {
 GROUP "ADDITIONAL" {
 GROUP "FILE_ATTRIBUTES" {
 }
 }
 GROUP "SWATHS" {
 GROUP "Swath1" {
 GROUP "Data Fields" {
 DATASET "Temperature" {
 DATATYPE H5T_IEEE_F64BE
 DATASPACE SIMPLE { (40, 20) / (40, 20) }
 DATA {
 (0,0): -999,-999,-999,-999,-999,-999,-999,-999,
 (0,8): -999,-999,-999,-999,-999,-999,-999,-999,
 (0,16): -999,-999,-999,-999,
 (1,0): -999,-999,-999,-999,-999,-999,-999,-999,
 (1,8): -999,-999,-999,-999,-999,-999,-999,-999,
 (1,16): -999,-999,-999,-999,

 (38,0): -999,-999,-999,-999,-999,-999,-999,-999,
 (38,8): -999,-999,-999,-999,-999,-999,-999,-999,
 (38,16): -999,-999,-999,-999,
 (39,0): -999,-999,-999,-999,-999,-999,-999,-999,
 (39,8): -999,-999,-999,-999,-999,-999,-999,-999,
 (39,16): -999,-999,-999,-999
 }
 ATTRIBUTE "_FillValue" {
 DATATYPE H5T_IEEE_F64BE
 DATASPACE SIMPLE { (1) / (1) }
 DATA {
 (0): -999
 }
 }
 ATTRIBUTE "Unit" {
 DATATYPE H5T_STRING {
 STRSIZE 13;
 STRPAD H5T_STR_NULLTERM;
 CSET H5T_CSET_ASCII;
 CTYPE H5T_C_S1;
 }
 DATASPACE SCALAR
 DATA {
 (0): "Degree Kelvin"
 }
 }
 }

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

47

 }
 GROUP "Geolocation Fields" {
 DATASET "Time" {
 DATATYPE H5T_IEEE_F64BE
 DATASPACE SIMPLE { (20) / (20) }
 DATA {
 (0): 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
 (18): 0, 0
 }
 ATTRIBUTE "_FillValue" {
 DATATYPE H5T_IEEE_F64BE
 DATASPACE SIMPLE { (1) / (1) }
 DATA {
 (0): 0
 }
 }
 }
 }
 }
 GROUP "Swath2" {
 GROUP "Data Fields" {
 }
 GROUP "Geolocation Fields" {
 }
 DATASET "_INDEXMAP:IndexTrack,Res2tr_indexed" {
 DATATYPE H5T_STD_I32BE
 DATASPACE SIMPLE { (6) / (6) }
 DATA {
 (0): 1, 5, 8, 12, 17, 20
 }
 }
 }
 }
 }
 GROUP "HDFEOS INFORMATION" {
 ATTRIBUTE "HDFEOSVersion" {
 DATATYPE H5T_STRING {
 STRSIZE 32;
 STRPAD H5T_STR_NULLTERM;
 CSET H5T_CSET_ASCII;
 CTYPE H5T_C_S1;
 }
 DATASPACE SCALAR
 DATA {
 (0): "HDFEOS_5.1.10"
 }
 }
 DATASET "StructMetadata.0" {
 DATATYPE H5T_STRING {
 STRSIZE 32000;
 STRPAD H5T_STR_NULLTERM;
 CSET H5T_CSET_ASCII;
 CTYPE H5T_C_S1;
 }
 DATASPACE SCALAR
 DATA {

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

48

 (0): "GROUP=SwathStructure
 GROUP=SWATH_1
 SwathName="Swath1"
 GROUP=Dimension
 OBJECT=Dimension_1
 DimensionName="GeoTrack"
 Size=20
 END_OBJECT=Dimension_1
 OBJECT=Dimension_2
 DimensionName="GeoXTrack"
 Size=10
 END_OBJECT=Dimension_2
 OBJECT=Dimension_3
 DimensionName="Res2tr"
 Size=40
 END_OBJECT=Dimension_3
 OBJECT=Dimension_4
 DimensionName="Res2xtr"
 Size=20
 END_OBJECT=Dimension_4
 OBJECT=Dimension_5
 DimensionName="Bands"
 Size=15
 END_OBJECT=Dimension_5
 OBJECT=Dimension_6
 DimensionName="ProfDim"
 Size=4
 END_OBJECT=Dimension_6
 OBJECT=Dimension_7
 DimensionName="Unlim"
 Size=-1
 END_OBJECT=Dimension_7
 END_GROUP=Dimension
 GROUP=DimensionMap
 OBJECT=DimensionMap_1
 GeoDimension="GeoTrack"
 DataDimension="Res2tr"
 Offset=0
 Increment=2
 END_OBJECT=DimensionMap_1
 OBJECT=DimensionMap_2
 GeoDimension="GeoXTrack"
 DataDimension="Res2xtr"
 Offset=1
 Increment=2
 END_OBJECT=DimensionMap_2
 END_GROUP=DimensionMap
 GROUP=IndexDimensionMap
 END_GROUP=IndexDimensionMap
 GROUP=GeoField
 OBJECT=GeoField_1
 GeoFieldName="Time"
 DataType=H5T_NATIVE_DOUBLE
 DimList=("GeoTrack")
 MaxdimList=("GeoTrack")
 END_OBJECT=GeoField_1
 END_GROUP=GeoField

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

49

 GROUP=DataField
 OBJECT=DataField_1
 DataFieldName="Temperature"
 DataType=H5T_NATIVE_DOUBLE
 DimList=("Res2tr","Res2xtr")
 MaxdimList=("Res2tr","Res2xtr")
 END_OBJECT=DataField_1
 END_GROUP=DataField
 GROUP=ProfileField
 END_GROUP=ProfileField
 GROUP=MergedFields
 END_GROUP=MergedFields
 END_GROUP=SWATH_1
 GROUP=SWATH_2
 SwathName="Swath2"
 GROUP=Dimension
 OBJECT=Dimension_1
 DimensionName="Res2tr_indexed"
 Size=40
 END_OBJECT=Dimension_1
 OBJECT=Dimension_2
 DimensionName="IndexTrack"
 Size=6
 END_OBJECT=Dimension_2
 END_GROUP=Dimension
 GROUP=DimensionMap
 END_GROUP=DimensionMap
 GROUP=IndexDimensionMap
 OBJECT=IndexDimensionMap_1
 GeoDimension="IndexTrack"
 DataDimension="Res2tr_indexed"
 END_OBJECT=IndexDimensionMap_1
 END_GROUP=IndexDimensionMap
 GROUP=GeoField
 END_GROUP=GeoField
 GROUP=DataField
 END_GROUP=DataField
 GROUP=ProfileField
 END_GROUP=ProfileField
 GROUP=MergedFields
 END_GROUP=MergedFields
 END_GROUP=SWATH_2
 END_GROUP=SwathStructure
 GROUP=GridStructure
 END_GROUP=GridStructure
 GROUP=PointStructure
 END_GROUP=PointStructure
 GROUP=ZaStructure
 END_GROUP=ZaStructure
 END
 "
 }
 }
 }
}
}

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

50

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

51

APPENDIX B Example HDF-EOS5 Grid Output

The following code fragment shows contents of HDF output created by the example code in

Section 8.2.4. It shows how HDF-EOS5 grid objects are mapped onto HDF5 objects.

HDF5 "Grid.he5" {
GROUP "/" {
 GROUP "HDFEOS" {
 GROUP "ADDITIONAL" {
 GROUP "FILE_ATTRIBUTES" {
 }
 }
 GROUP "GRIDS" {
 GROUP "TMGrid" {
 GROUP "Data Fields" {
 DATASET "Voltage" {
 DATATYPE H5T_IEEE_F32BE
 DATASPACE SIMPLE { (5, 7) / (5, 7) }
 DATA {
 (0,0): -1.11111,-1.11111,-1.11111,-1.11111,-1.11111,
 (0,5): -1.11111,-1.11111,
 (1,0): -1.11111,-1.11111,-1.11111,-1.11111,-1.11111,
 (1,5): -1.11111,-1.11111,
 (2,0): -1.11111,-1.11111,-1.11111,-1.11111,-1.11111,
 (2,5): -1.11111,-1.11111,
 (3,0): -1.11111,-1.11111,-1.11111,-1.11111,-1.11111,
 (3,5): -1.11111,-1.11111,
 (4,0): -1.11111,-1.11111,-1.11111,-1.11111,-1.11111,
 (4,5): -1.11111,-1.11111
 }
 ATTRIBUTE "_FillValue" {
 DATATYPE H5T_IEEE_F32BE
 DATASPACE SIMPLE { (1) / (1) }
 DATA {
 (0): -1.11111
 }
 }
 }
 }
 }
 }
 }
 GROUP "HDFEOS INFORMATION" {
 ATTRIBUTE "HDFEOSVersion" {
 DATATYPE H5T_STRING {
 STRSIZE 32;
 STRPAD H5T_STR_NULLTERM;
 CSET H5T_CSET_ASCII;
 CTYPE H5T_C_S1;
 }
 DATASPACE SCALAR
 DATA {
 (0): "HDFEOS_5.1.10"
 }
 }

ESE-RFC-008 Larry Klein, Abe Taaheri

Category-Draft Community Standard 3/30/2006

52

 DATASET "StructMetadata.0" {
 DATATYPE H5T_STRING {
 STRSIZE 32000;
 STRPAD H5T_STR_NULLTERM;
 CSET H5T_CSET_ASCII;
 CTYPE H5T_C_S1;
 }
 DATASPACE SCALAR
 DATA {
 (0): "GROUP=SwathStructure
 END_GROUP=SwathStructure
 GROUP=GridStructure
 GROUP=GRID_1
 GridName="TMGrid"
 XDim=5
 YDim=7
 UpperLeftPointMtrs=(4855670.775390,9458558.924830)
 LowerRightMtrs=(5201746.439830,-10466077.249420)
 Projection=HE5_GCTP_TM

ProjParams=(0,0,0.999600,0,-75000000,0,5000000,
0,0,0,0,0,0)

 SphereCode=0
 GROUP=Dimension
 OBJECT=Dimension_1
 DimensionName="Time"
 Size=10
 END_OBJECT=Dimension_1
 OBJECT=Dimension_2
 DimensionName="Unlim"
 Size=-1
 END_OBJECT=Dimension_2
 END_GROUP=Dimension
 GROUP=DataField
 OBJECT=DataField_1
 DataFieldName="Voltage"
 DataType=H5T_NATIVE_FLOAT
 DimList=("XDim","YDim")
 MaxdimList=("XDim","YDim")
 END_OBJECT=DataField_1
 END_GROUP=DataField
 GROUP=MergedFields
 END_GROUP=MergedFields
 END_GROUP=GRID_1
 END_GROUP=GridStructure
 GROUP=PointStructure
 END_GROUP=PointStructure
 GROUP=ZaStructure
 END_GROUP=ZaStructure
 END
 "
 }
 }
 }
}
}

